Source: vis/input_modifiers.py#L0
InputModifier
Abstract class for defining an input modifier. An input modifier can be used with the
Optimizer.minimize to make pre
and post
changes to the optimized input
during the optimization process.
modifier.pre(seed_input)
# gradient descent update to img
modifier.post(seed_input)
InputModifier.post
post(self, inp)
Implement post gradient descent update modification to the input. If post-processing is not desired,
simply ignore the implementation. It returns the unmodified inp
by default.
Args:
- inp: An N-dim numpy array of shape:
(samples, channels, image_dims...)
ifimage_data_format= channels_first
or(samples, image_dims..., channels)
ifimage_data_format=channels_last
.
Returns:
The modified post input.
InputModifier.pre
pre(self, inp)
Implement pre gradient descent update modification to the input. If pre-processing is not desired,
simply ignore the implementation. It returns the unmodified inp
by default.
Args:
- inp: An N-dim numpy array of shape:
(samples, channels, image_dims...)
ifimage_data_format= channels_first
or(samples, image_dims..., channels)
ifimage_data_format=channels_last
.
Returns:
The modified pre input.
Jitter
Jitter.__init__
__init__(self, jitter=0.05)
Implements an input modifier that introduces random jitter in pre
.
Jitter has been shown to produce crisper activation maximization images.
Args:
- jitter: The amount of jitter to apply, scalar or sequence.
If a scalar, same jitter is applied to all image dims. If sequence,
jitter
should contain a value per image dim.
A value between [0., 1.]
is interpreted as a percentage of the image dimension. (Default value: 0.05)
Jitter.post
post(self, inp)
Implement post gradient descent update modification to the input. If post-processing is not desired,
simply ignore the implementation. It returns the unmodified inp
by default.
Args:
- inp: An N-dim numpy array of shape:
(samples, channels, image_dims...)
ifimage_data_format= channels_first
or(samples, image_dims..., channels)
ifimage_data_format=channels_last
.
Returns:
The modified post input.
Jitter.pre
pre(self, img)