Source: keras_text/models/sequence_encoders.py#L0
SequenceEncoderBase
SequenceEncoderBase.__init__
__init__(self, dropout_rate=0.5)
Creates a new instance of sequence encoder.
Args:
- dropout_rate: The final encoded output dropout.
SequenceEncoderBase.build_model
build_model(self, x)
Build your model graph here.
Args:
- x: The encoded or embedded input sequence.
Returns:
The model output tensor without the classification block.
SequenceEncoderBase.requires_padding
requires_padding(self)
Return a boolean indicating whether this model expects inputs to be padded or not.
YoonKimCNN
YoonKimCNN.__init__
__init__(self, num_filters=64, filter_sizes=[3, 4, 5], dropout_rate=0.5, **conv_kwargs)
Yoon Kim's shallow cnn model: https://arxiv.org/pdf/1408.5882.pdf
Args:
- num_filters: The number of filters to use per
filter_size
. (Default value = 64) - filter_sizes: The filter sizes for each convolutional layer. (Default value = [3, 4, 5])
**cnn_kwargs: Additional args for building the
Conv1D
layer.
YoonKimCNN.build_model
build_model(self, x)
YoonKimCNN.requires_padding
requires_padding(self)
StackedRNN
StackedRNN.__init__
__init__(self, rnn_class=<class 'keras.layers.recurrent.GRU'>, hidden_dims=[50, 50], \
bidirectional=True, dropout_rate=0.5, **rnn_kwargs)
Creates a stacked RNN.
Args:
- rnn_class: The type of RNN to use.
- hidden_dims: The hidden dims for corresponding stacks of RNNs.
- bidirectional: Whether to use bidirectional encoding. **rnn_kwargs: Additional args for building the RNN.
StackedRNN.build_model
build_model(self, x)
StackedRNN.requires_padding
requires_padding(self)
AttentionRNN
AttentionRNN.__init__
__init__(self, rnn_class=<class 'keras.layers.recurrent.GRU'>, encoder_dims=50, \
bidirectional=True, dropout_rate=0.5, **rnn_kwargs)
Creates an RNN model with attention. The attention mechanism is implemented as described in https://www.cs.cmu.edu/~hovy/papers/16HLT-hierarchical-attention-networks.pdf, but without sentence level attention.
Args:
- rnn_class: The type of RNN to use.
- encoder_dims: The number of hidden units of RNN.
- bidirectional: Whether to use bidirectional encoding. **rnn_kwargs: Additional args for building the RNN.
AttentionRNN.build_model
build_model(self, x)
AttentionRNN.get_attention_tensor
get_attention_tensor(self)
AttentionRNN.requires_padding
requires_padding(self)
AveragingEncoder
AveragingEncoder.__init__
__init__(self, dropout_rate=0)
An encoder that averages sequence inputs.
AveragingEncoder.build_model
build_model(self, x)
AveragingEncoder.requires_padding
requires_padding(self)