Source: keras_text/models/sentence_model.py#L0
SentenceModelFactory
SentenceModelFactory.__init__
__init__(self, num_classes, token_index, max_sents, max_tokens, embedding_type="glove.6B.100d", \
embedding_dims=100)
Creates a SentenceModelFactory
instance for building various models that operate over
(samples, max_sentences, max_tokens) input.
Args:
- num_classes: The number of output classes.
- token_index: The dictionary of token and its corresponding integer index value.
- max_sents: The max sentence length across all documents.
- max_tokens: The max number of tokens across all sentences.
- embedding_type: The embedding type to use. Set to None to use random embeddings. (Default value: 'glove.6B.100d')
- embedding_dims: The number of embedding dims to use for representing a word. This argument will be ignored
when
embedding_type
is set. (Default value: 100)
SentenceModelFactory.build_model
build_model(self, token_encoder_model, sentence_encoder_model, trainable_embeddings=True, \
output_activation="softmax")
Builds a model that first encodes all words within sentences using token_encoder_model
, followed by
sentence_encoder_model
.
Args:
- token_encoder_model: An instance of
SequenceEncoderBase
for encoding tokens within sentences. This model will be applied across all sentences to create a sentence encoding. - sentence_encoder_model: An instance of
SequenceEncoderBase
operating on sentence encoding generated bytoken_encoder_model
. This encoding is then fed into a finalDense
layer for classification. - trainable_embeddings: Whether or not to fine tune embeddings.
- output_activation: The output activation to use. (Default value: 'softmax')
- Use:
softmax
for binary or multi-class.sigmoid
for multi-label classification.linear
for regression output.
Returns:
The model output tensor.